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Abstract Evidence for the existence of discrete submovements underly-

ing continuous human movement has motivated many attempts to “extract”

them. Although they produce visually convincing results, all of the method-

ologies that have been employed are prone to produce spurious decompo-

sitions. In previous work, a branch-and-bound algorithm for submovement

extraction, capable of global nonlinear minimization, and hence, capable of

avoiding spurious decompositions, was presented (Rohrer and Hogan, 2003).
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Here we present a scattershot-type global nonlinear minimization algorithm

that requires approximately four orders of magnitude less time to compute.

A sensitivity analysis reveals that the scattershot algorithm can reliably de-

tect changes in submovements parameters over time, e.g. over the course of

neuromotor recovery.

1 Introduction

During a kinematic analysis of stroke recovery, Krebs et al. (1999) observed

a striking feature of the earliest movements made by recovering patients.

These movements were “fragmented,” and each of the fragments was highly

stereotyped. The existence of these fragments, or submovements as they

are called, has been supported by a wide range of studies over the past

100 years. The studies include observations of slow movements (Vallbo and

Wessberg 1993), eye saccades (Collewijn et al. 1988), cyclical movements

(Woodworth 1899; Crossman and Goodeve 1983; Doeringer 1999), ballistic

movements (Morasso 1981), movements of developing infants (von Hofsten

1991), and movements requiring high accuracy (Milner 1992).

The goal of submovement extraction is to infer the submovement com-

position of a movement from kinematic data. In the tangential velocity

domain, a submovement is represented as a unimodal, bell-shaped function.

Determining the number, relative timing, and amplitude of submovements

that most closely reproduce the original tangential velocity data is a global

nonlinear optimization problem. In general, global nonlinear optimization
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problems are difficult to solve. Although several submovement extraction

algorithms have been proposed previously (Morasso and Mussa-Ivaldi 1982;

Flash and Henis 1991; Milner 1992; Berthier 1996; Lee et al. 1997; Bur-

det and Milner 1998), all of them are subject to finding local, rather than

global, minima and to producing spurious decomposition results (Rohrer

and Hogan 2003). Principal Components Analysis was evaluated for use in

submovement extraction, as well, but was found to be inappropriate in that

it extracted continuous time components that spanned the entire movement

and that contained parts of several submovements. An algorithm guaran-

teed to find the global minimum in extraction was proposed in Rohrer and

Hogan (2003). Due to the computational demands of that approach, we de-

veloped an alternative submovement extraction algorithm based on the no-

tion of “scattershot” optimization, which is local optimization starting from

a number of random initial conditions. The scattershot algorithm finds the

globally optimal submovement composition probabilistically, i.e., the prob-

ability of finding the globally best fit can be made arbitrarily close to 1 by

increasing the number of random starting points used in the optimization.

2 Method

2.1 Algorithm outline: Multiple local minimizations from random initial

conditions

Submovements were extracted from tangential velocity data using MAT-

LAB’s fmincon function initialized at 10 randomly selected points in the so-
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lution space. The submovement extracted functions were support-bounded

lognormal (LGNB) curves, a class of submovement shape proposed by Pla-

mondon (1992) and found to fit point-to-point drawing movements better

than 22 other candidate functions (Plamondon et al. 1993). An LGNB curve

is defined as a function B(t) such that:

B(t) =
D(T1 − T0)

σ
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for T0 ≤ t ≤ T1, where D is the displacement resulting from the movement,

T0 is the movement start time, T1 is the end time, µ controls the skewness

(asymmetry), and σ determines the kurtosis (“fatness”) of the curve. The

five independent parameters that define LGNB submovements allow them

to take on a wide range of submovement-like shapes. In this study, sub-

movements were allowed to take on a duration between 167 ms and 1500

ms. Submovements were not fit one at a time, as in a “greedy” algorithm.

Instead, all the parameters of all the submovements were optimized simulta-

neously. An increasing number of submovements were fit to each movement

until the “fit error,” E , fell below a predetermined threshold, which in this

case was 2%. The fit error is defined as follows:

E =

∫

|F (t) − G(t)|dt
∫

|G(t)|dt
, (2)

where G(t) is the movement speed profile, and F (t) is the extracted speed

profile. Figure 1 shows an example of successfully extracted submovements.

The scattershot algorithm is probabilistic in nature, i.e., the results are

globally optimal with some probability close but not equal to unity. As
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a result, the actual submovement characteristics extracted for a given sub-

movement may not be optimal. In other words, the extracted submovements

cannot be guaranteed to be the best fit for that movement in a global sense.

However, we will show that the data in a study involving 479 movements of

two stroke patients allow strong statistical statements to be made. Even if

the results of any given extraction may be uncertain, the trends observed

reach statistical significance.

2.2 Algorithm validation data: Movements of stroke patients

The movements of two subjects were used to test the algorithm’s perfor-

mance. One subject was an acute-stage inpatient who had suffered his first

unilateral infarct less than one month before beginning the study. The other

subject was a chronic-stage outpatient 30 months post-stroke. Full details

of the study protocol can be found in Rohrer et al. (2002). In brief, the

planar-reaching movements of these two subjects were measured in eight

directions several times a week over the course of several weeks.

Five characteristics of the submovements are summarized in the results

plots. Each submovement is characterized individually by its (1) duration

and (2) peak speed. The relative and collective characteristics of the sub-

movements are represented by (3) the number of submovements in the entire

movement, (4) the interpeak interval (interval between peaks of consecutive

submovements, see Figure 2a), and (5) the overlap (interval between ini-
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tiation of a submovement and termination of the previous one, see Figure

2a).

2.3 Algorithm validation method: Sensitivity analysis

The scattershot extraction algorithm is not guaranteed to produce an op-

timal result. In fact, given the high dimensionality of the solution space

(as high as 50 in the data we observed), the probability that the algorithm

found the optimal solution in more than a few cases is negligible. To test

how closely the extracted submovements can be expected to represent the

actual (hypothesized) underlying submovements, a sensitivity analysis was

performed. This analysis also tests whether the submovement characteristics

were influenced by changes in the decomposition conditions. The submove-

ments were extracted while both the submovement shape and the bounds

on submovement duration were varied.

The sensitivity analysis was performed on data derived from the move-

ments of two actual patients, subjects 203 and 708, who were representative

of qualitatively different levels of motor recovery. The data set was gener-

ated by taking the original patient data for a given movement, extracting its

submovements with the scattershot algorithm, and then summing the ex-

tracted submovements to create new movement data. These new data were

similar to the original data (within a modest error), but different in that the

new data could be perfectly fit by a small, known set of submovements. The

resulting data were biologically plausible and had a known submovement
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composition; hereafter these are referred to as “actual” submovements. Us-

ing these data, we addressed the question: If a set of movements is composed

of submovements, the characteristics of which change over time, can those

changes be reliably detected by the scattershot algorithm despite variations

in the conditions of the extraction algorithm?

Submovements were extracted from the data set under six conditions:

(1) LGNB submovements. Submovements were extracted under the same

conditions as the original decomposition: Support-bounded LGNB sub-

movements with a maximum duration of 1.5 s and a fit error threshold

of 2%. This decomposition was a check that the extraction algorithm

was well behaved. One would expect the algorithm to produce results

that are similar to the original, although not identical, as the algorithm

had a 2% margin of error in which to differ.

In addition to LGNB submovements, several other submovement shapes

were tested in decomposition. In each case, the fit error threshold was

2%, and the maximum duration was 1.5 s. These decompositions quan-

tify the effect of submovement shape on the characteristics of the ex-

tracted submovements. See Figure 2b for an illustration of each of the

submovement shapes used.

(2) Symmetric LGNB submovements. In this case, LGNB submovements

were constrained to be symmetric and have a fixed kurtosis (see Figure

2b).
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(3) Gaussian submovements. Gaussian submovements (see Figure 2b) were

among the first used in mathematical descriptions of submovements

(Crossman and Goodeve 1983). For analysis purposes, the duration was

defined to be ±3σ, although the tails of the Gaussian curve were not

truncated during extraction.

(4) Minimum-jerk. Minimum-jerk functions (see Figure 2b) are the most

commonly used in submovement analyses. These functions have been

shown to fit reaching movement speed profiles to within a few per-

cent (Hogan 1984) and are inexpensive to compute.

(5) and (6) LGNB submovements with varying durations (0.833 s and 2.5 s).

The duration of the actual submovements that may compose a given

submovement is unknown, yet the submovement extraction algorithm

employed requires that an upper bound be placed on the duration of

extracted submovements. Based on previous studies of arm movements

that cite typical ballistic movement durations of less than 1 s, 1.5 s was

chosen as a reasonable upper bound. However, the submovements gener-

ated during decomposition of the patient data showed that a significant

fraction of submovements has the maximum permissible duration, 1.5

s. This suggests that an upper bound on submovement duration of 1.5

s may have been too low. Two sets of decompositions were performed

with LGNB submovements, a fit error threshold of 2%, and maximum

durations of 0.833 s and 2.5 s. Decomposing the data using various sub-

movement durations served to quantify the effect of selecting a maximum
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duration that was not well matched to the duration of the submovements

underlying the data.

3 Results

3.1 Solution-finding performance

The decompositions performed in the sensitivity analysis produced submovement-

characteristic distributions that varied over time. The complete results are

summarized in Figure 3. Each of the submovement characteristics showed

a wide range of variability, depending upon the conditions under which the

characteristics were extracted (as great as a factor of 2 in the case of du-

ration), and this dependence was structured. The effects of submovement

shape and maximum duration of extracted submovements are considered

separately.

3.2 Sensitivity of decompositions to submovement shape

In addition to extracting LGNB submovements, symmetric LGNB, Gaus-

sian, and minimum-jerk submovements were extracted as well (columns 2–5

of the plots in Figure 3). Of the four submovement shapes, only LGNB was

capable of taking on asymmetric shapes. The similarity of the other three

shapes (see Figure 2b) led them to be very similar in all five submovement

characteristics. LGNB’s ability to take on a wider range of shapes than the

other functions accounts for the slightly lower number of LGNB submove-

ments extracted—∼ 12 versus ∼ 14 (see Figure 3, panels a and aa). Also,
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when the LGNB becomes markedly asymmetric, it develops long “tails,”

which account for its greater duration (panels b and bb) and overlap (pan-

els e and ee).

3.3 Sensitivity of decompositions to duration constraints

The characteristics of the extracted submovements follow a clear pattern in

both sets of test data (see columns 6 and 7 of the plots in Figure 3). As

expected, typical submovement duration is much longer in the 2.5 s case

than in the 0.866 s case (see panels b and bb). Also, fewer submovements

are extracted in the 2.5 s case (panels a and aa), presumably because longer

submovements can capture a greater portion of the data. Fewer submove-

ments in a given movement imply a greater interpeak interval, which is also

observed (panels d and dd). Overlap tends to be greater with longer sub-

movements as well (panels e and ee). Amplitude appears not to be strongly

affected, at least in the case of these data.

3.4 Changes in submovement characteristics consistent between

decomposition conditions

The most notable result of the sensitivity analysis is that the direction of

submovement changes over the course of therapy is robust to decomposi-

tion conditions. In every case where a submovement characteristic changed

appreciably, say greater than 15% of the range, under at least one set of
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conditions, the sign of the change for that characteristic was consistent for

every other set of conditions.

Furthermore, the statistical significance of the characteristic changes

is robust to details of the extraction algorithm’s parameters. Significant

changes in a submovement characteristic under one set of test conditions

was a strong indicator that other conditions would also yield significant

changes (see panels aa, d, and e). Not only does the direction of change

tend to be preserved across test conditions, but the statistical strength tends

to be preserved as well.

Correlation coefficients were calculated for actual submovement charac-

teristics with those of submovements extracted during the sensitivity analy-

sis. The results are shown in Table 1. The most apparent pattern is that sub-

movement characteristics associated with the peak of the submovement (am-

plitude, inter-peak interval, and indirectly the number of submovements) are

consistently significant, while characteristics that are highly sensitive to the

nature of the tails (duration and overlap) show less consistent correlation.

This may be due to the fact that the extraction process is far more sensi-

tive to the “hump” of the submovement speed profiles than to the tails, and

hence can introduce large variability in the tails without degrading the qual-

ity of the extraction. Note that despite weak correlation in the day-to-day

values of overlap in Patient 203, the various extraction conditions main-

tained a remarkable consistency in reporting the overall trend (see Figure

3e).
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The sensitivity analysis indicates that although the scattershot algo-

rithm cannot promise that the submovements resulting from extraction nec-

essarily represent those originally used to construct the movement, the al-

gorithm can provide a probable range for the submovement characteristics.

The key result of the analysis is that, despite uncertainties, the scattershot

algorithm can reliably detect the direction and significance of changes in

submovement characteristics.

3.5 Required computing power

While both the scattershot algorithm and the branch and bound algorithm

avoid the pitfalls associated with getting trapped in local minima, they

differ greatly in the amount of computation they demand. In a set of com-

parison tests on a Pentium IV 3.2 GHz processor, both algorithms fit a

single minimum-jerk submovement in approximately one-half second. How-

ever, their performance differed dramatically when fitting more than one

submovement (see Figure 4). When fitting three submovements, the com-

putation time was over four orders of magnitude lower in the scattershot

algorithm, despite the fact that it makes ten separate attempts at the de-

composition during each fit. Computation time grew polynomially in the

scattershot algorithm and exponentially in the branch and bound algo-

rithm, further increasing the time advantage of the scattershot algorithm

with larger numbers of submovements.
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4 Discussion

The scattershot algorithm described here can extract submovements whose

characteristics are probabilistically related to actual submovements under-

lying kinematic data. The statistical analysis presented to demonstrate this

utilizes data from only two patients, and hence this paper does not claim

to reach any clinical conclusions. However, the 470 reaching movements an-

alyzed, containing approximately 5000 submovements, provides an ample

data set from which to derive statistically significant results. The scatter-

shot method, unlike previously proposed methods, seeks a globally optimal

solution and is not susceptible to getting caught in local minima. As such,

it has the potential to reliably find higher-quality and more biologically

meaningful solutions.

The chief result presented here is that changes in the characteristics

of extracted submovements are statistically reliable, and remain consistent

across a wide range of extraction conditions. In particular those character-

istics associated with the peak of the submovement, rather than the tails,

were shown to correlate well with the characteristics of the original sub-

movements. This was shown to be true even with a small number (10) of

random initial conditions. The primary strength of the scattershot algo-

rithm is that it does not rely on an operator’s subjective judgment when

performing submovements extractions. It is fully automated in this sense,

and it does not require the interaction of the researcher, except to establish

the parameters of extraction.
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Despite high-dimensional solution spaces (as high as 50), the proposed

scattershot algorithm performed well using only 10 sets of random initial

conditions. In fact, during initial testing of the algorithm in decomposing

constructed speed profiles, it was discovered that it typically finds the glob-

ally optimal solution two to four times out of ten. This may be due in part to

the highly redundant nature of the submovement extraction solution space.

Submovement order does not matter, so there necessarily exist multiple so-

lutions that are equivalent: n!, where n is the number of submovements

being extracted. When attempting to extract 10 submovements (from a

50 (5n)–dimensional solution space), this results in 3.63 million redundant

“optimal” solutions, each of which is equally correct.

With this scattershot algorithm, it will be possible to meaningfully an-

alyze the submovements composition of kinematic data produced during

movement. Such an analysis has been performed on the movements of pa-

tients recovering from a stroke (Rohrer et al. 2004), and results indicate

that submovement extractions provide a fine-resolution measure of motor

recovery. The scattershot algorithm can be an effective tool for bringing to

light subtleties of the human motor control system.
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Fig. 1 Typical movements (bold lines) and their extracted submovements (fine

lines) from the first and last days of therapy for a stroke patient.

Fig. 2 a) Definitions of interpeak interval and submovement overlap. Note that

due to the nature of the overlap measure, overlap can be negative, indicating a

period of no activity between submovements. b) The four submovement shapes

used in decompositions. In each case, the peak height is 1, the peak is centered at

500 ms, and the nominal duration is 1000 ms. The symmetric LGNB curve has

µ = 0 and σ = 0.7. The asymmetric LGNB curve has µ = −0.9 and σ = 0.7.

Using six σ as the duration for the Gaussian curve allows it to closely overlay the

others.

Fig. 3 Sensitivity analysis of submovement extraction to algorithm conditions:

submovement shape and maximum duration. Data are based on the movements

of patients 203 and 708. The initial value is represented by the horizontal bar. For

statistically significant changes (p < 0.05), the box is filled; otherwise, it is left

hollow. The level of significance is further indicated by asterisks: 0.01 < p < 0.05:*,

0.001 < p < 0.01:**, p < 0.001:***.

Fig. 4 Times required to extract minimum-jerk submovements using the scat-

tershot algorithm (•) are described by a least-squares third-order polynomial fit

(solid line). Times required to extract minimum-jerk submovements using the

branch and bound algorithm (∗) are described by a least-squares exponential fit

(dotted line). The highest point on the plot (over 10M sec) was extrapolated; the

fit calculation was halted after searching 9% of the solution space in 13 days.
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Patient 203

extraction number of interpeak

condition submovements duration amplitude interval overlap

LGNB 0.89 0.51 0.92 0.95 0.94

Symmetric LGNB 0.89 0.65 0.97 0.89 0.28

Gaussian 0.94 0.54 0.98 0.88 -0.23

Minimum Jerk 0.89 0.61 0.97 0.88 -0.01

2.5 s max duration 0.94 0.32 0.98 0.96 0.70

0.866 s max duration 0.92 -0.27 0.98 0.92 0.79

Patient 708

extraction number of interpeak

condition submovements duration amplitude interval overlap

LGNB 0.91 0.42 0.95 0.81 0.12

Symmetric LGNB 0.91 0.67 0.94 0.82 0.30

Gaussian 0.91 0.70 0.95 0.86 0.09

Minimum Jerk 0.91 0.73 0.92 0.86 0.16

2.5 s max duration 0.91 0.81 0.90 0.76 0.27

0.866 s max duration 0.93 0.30 0.93 0.67 0.58

Table 1 Correlation (Pearson’s r) of actual submovement characteristics with

those extracted during the sensitivity analysis. Submovement characteristics were

averaged over each therapy day. Bold numbers are significantly non-zero with a

confidence interval of 95%.


